
Migrate
Getting it into Drupal

andrew morton
drewish@zivtech.com

mailto:drewish@zivtech.com
mailto:drewish@zivtech.com

Migrate 2.0

• Powerful object oriented framework for
moving content into Drupal.

• Minimal UI, primarily code based.

• Steep learning curve (aka migraine
module) but hopefully this talk will help.

Migrate 2.0

• Drupal 6 requires autoload and dbtng
modules. So the code is very similar in 6
and 7.

• Migrate Extras provides support for many
contrib modules.

• The best documentation is in the wine.inc
and beer.inc example code.

Why not just use
Feeds?

• If it does what you need, use it. It’s much
easier to setup.

• Migrate is faster, and more flexible but
you need to write code to map fields.

• Feeds doesn’t work well if you’ve got
different content types that need to
reference each other.

The Concepts

• Source

• Destination

• Map

• Field Mapping

• Field Handlers

• Migration

Source

• Interface to your existing data (SQL, CSV,
XML, JSON)

• Provides a list of fields and descriptions

• Iterates (reset, next) over rows

Destination

• Interface for writing data to Drupal—
typically to a Entity.

• Creates one record for each record in the
source. If you’re creating users and
profiles, you’ll need two migrations.

Source
SQL, XML, JSON, CSV, etc

Destination
Node, User, Term, etc

Map

ID Name Age
1 Larry 34
2 Curly 54
4 Moe 47

entity_id field_name field_age

32 Larry 34
33 Curly 54
34 Moe 47

Source ID Dest ID
1 32
2 33
4 34

Map

Map

• Connects the source’s ID to the
destination’s ID.

• Provides lookup facilities.

• Allows created items to be deleted as
part of a rollback.

Source
SQL, XML, JSON, CSV, etc

Destination
Node, User, Term, etc

Field Mappings

entity_id field_name field_age

32 Larry 34
33 Curly 54
34 Moe 47

Source Destination
Name field_name
Age field_age
Junk NULL

ID Name Age Junk
1 Larry 34 blah
2 Curly 54
4 Moe 47 Spam

Field Mappings

Field Mappings

• Links a source field to a destination field.

• Lets you look up IDs from the other
migration’s maps with sourceMigration().

• If the destination has a complex structure
(e.g. Address or file field) then additional
data is passed in via arguments().

Migration

• Code that glues the parts together.

• In your constructor you setup: source,
destination, map and field mappings.

• Allows customization at several points:
prepareRow(), prepare(), complete().

Field Handlers

• Handles the details of converting the field
into the structure that Drupal
understands.

• Turns $entity->field_bar = “foo” into
$entity->field_bar[‘und’][0][‘value’] = “foo”

• Might pull additional data out of
arguments.

Destination Handler

• Provides additional functionality to a
destination, e.g. comment adding a field
to nodes for comment status.

• Destination delegates calls to fields(),
prepare(), complete() to the destination
handlers.

• You probably won’t need to write one.

UI Demo

• Lets go look at the UI.

Drush Commands

• migrate-status (ms) - List all migrations and
display their current status.

• migrate-import (mi) - Start a migration and
create/update destination objects.

• migrate-reset-status (mrs) - Reset a migration.

• migrate-rollback (mr) - Delete a migration’s
destination objects.

Basic Module

• Create a new module

• Implement hook_migrate_api()

• Create a class that extends Migration and
setup the source, destination, map and
field mappings in the constructor

• Register the class in the .info file

SQL Source
// inside __construct()

$query = db_select('migrate_example_beer_topic',
'met')
 ->fields('met', array('style', 'details',
 'style_parent', 'region', 'hoppiness'))
 ->orderBy('style_parent', 'ASC');

$this->source = new MigrateSourceSQL($query);

Or a CSV Source
// The definition of the columns. Keys are integers,
// values are an array of field name then description.
$columns = array(
 0 => array('cvs_uid', 'Id'),
 1 => array('email', 'Email'),
 2 => array('name', 'Name'),
 3 => array('date', 'Date'),
);

// Instantiate the class using the path to the CSV
// file and the columns.
$path = 'path/relative/to/drupal/root/your_file.csv';
$this->source = new MigrateSourceCSV($path, $columns);

Other Sources

• There are also classes for importing
content from XML and JSON.

• Lots of variation among sources so expect
to do some tweaking.

Source Base Classes

• If you can fetch IDs separately from values:

• Use MigrateSourceList as a source

• Implement MigrateList for fetching counts and
IDs, and MigrateItem for fetching values

• If everything is in a single file with IDs mixed in:

• Use MigrateSourceMultiItems as a source

• Implement MigrateItems for extracting IDs and
values

Migration Map
// inside __construct()

$this->map = new MigrateSQLMap($this->machineName,
 array(
 'style' => array(
 'type' => 'varchar',
 'length' => 255,
 'not null' => TRUE,
 'description' => 'Topic ID',
)
),
 MigrateDestinationTerm::getKeySchema()
);

Destinations
// inside __construct()

// Create terms...
$this->destination = new
 MigrateDestinationTerm('example_beer_styles');

// ...or nodes...
$this->destination = new
 MigrateDestinationNode('article');

// ...or
$this->destination = new
 MigrateDestinationUser();

Creating Destinations

• Hopefully you won’t need to.

• If you’re working with entities created by
the Entity API make sure you look at:
http://drupal.org/node/1168196

http://drupal.org/node/1168196
http://drupal.org/node/1168196
http://drupal.org/node/1168196
http://drupal.org/node/1168196

Field Mappings
// inside __construct()

// Can be as simple as this...
$this->addFieldMapping('name', 'style');

// ...or more complicated.
$this->addFieldMapping(NULL, 'region')
 ->description('This is broken')
 ->issueGroup(t('Client Issues'))
 ->issuePriority(
 MigrateFieldMapping::ISSUE_PRIORITY_MEDIUM)
 ->issueNumber(770064);

Field Mapping
Arguments

• Generally used as a hack to pass multiple
source fields into a single destination
field.

• Use this magic syntax to have arguments
replaced by values from the source row:
$this->addFieldMapping('D', 'S1')->arguments(
 array('A1' => array('source_field' => 'S2')),
 array('A2' => array('source_field' => 'S3'))
);

Field Mapping
Arguments

// Files have so many arguments there’s a helper
// to build the array:
$arguments = MigrateFileFieldHandler::arguments(
 drupal_get_path('module', 'migrate_example'),
 'file_copy', FILE_EXISTS_RENAME, NULL,
 array('source_field' => 'image_alt'),
 array('source_field' => 'image_description'));
$this->addFieldMapping('field_image', 'image')
 ->arguments($arguments);

Field Mapping
Source Migrations

• When you have an ID value from the old
system and need to look up the new ID
from the Migration Map:
$this->addFieldMapping('uid', 'author_id')
 ->sourceMigration('BeerUser')

• Add a dependency to make sure the
other migration runs first:
$this->dependencies = array('BeerUser');

•

Circular
Dependencies

• Break them by using stubs.

• Implement createStub($migration), create
a dummy record and return the new id.

• Specify a sourceMigration on the field
mapping.

prepareRow($row)

• Passes in the source row as an object so
you can make modifications.

• Add or change field values by modifying
the properties:
$row->name = $row->first . “ ” . $row->last;
$row->created = strtotime($row->access);

• Return FALSE to indicate that rows
should be skipped over during an import.

prepare($entity, $row)

• Passes in the entity object with properties
populated by field mappings, and the
source row.

• Last chance to make changes before the
entity is saved.

• If you have an unsupported field type you
can manually populate it here:

complete($ent, $row)

• Passes in the saved entity (with any ID
values from auto increment fields) and
the source row.

• This is the place if you need to update
other records to reference the new entity.

• If you’re doing a node_save($ent) in here,
you’re doing it wrong.

Writing a Field
Handler

• Hopefully you won’t need to.

• Register compatible field type in
constructor.

• Handle conversion in prepare().

• Optionally, use complete() for follow
tasks.

Thanks!
Any Questions?

